
Urinary System Organization

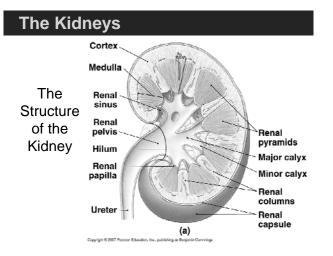
- The Golden Rule: The Job of The Urinary System is to Maintain the Composition and Volume of ECF... remember this & all else will fall in place!
- Functions of the Urinary System
 - Eliminate organic wastes
 - · Regulate plasma ion levels
 - · Regulate blood volume and blood pressure
 - Adjust water loss
 - · Release cardiovascular hormones
 - Stabilize blood pH
 - · Conserve nutrients

Urinary System Organization

The Components of the Urinary System

Transports urine toward the urinary bladder URINARY BLADDER

Conducts urine to exterior

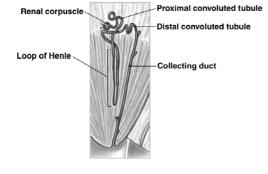

The Kidneys

right © 2007 Pearson Education, Inc., publishing as Bo

- Anatomy of the Kidney
 - Location:
 - retroperitoneal
 - Left kidney superior to right
 - Left kidney superior aspect at T11
 - Right kidney superior aspect between T11 & T12
 - · Fibrous capsule surrounds the kidney
 - · Renal artery & vein, renal nerve and ureter enter & exit at hilum (another generic term...)

Internal Anatomy of the Kidney

- Nephrons
 - functional units of kidney!
 - Urine produced by nephrons
 - About a *million* nephrons per kidney
 - Two types of nephrons
 - Cortical (short loops)
- Juxtamedullary (long loops)Renal *pelvis*
 - Urine collects here from *calyces*
 - Input from two *major* calyces
 - Each major calyces
 Each major calyx is fed by four to five *minor* calyces
 - Urine leaves pelvis to ureter



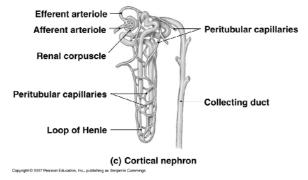
агу

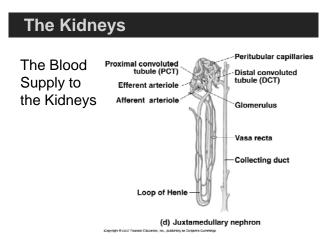
The Kidneys

The Structure of the Kidney's Functional Portion – The Nephron

- Renal artery
 - Interlobar arteries
 - Arcuate arteries
 - Interlobular
 - arteries
 - Afferent
 - arteriole to
 - nephron
 - Efferent
 - arteriole –from
 - nephron
 - Interlobular veins
 - Arcuate veins
 - · Interlobar veins
- Renal Vein

Kidney Blood Supply


The Kidneys

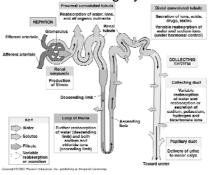

Blood Supply to the Nephron

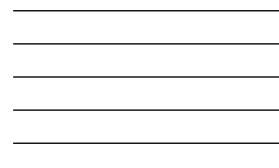
- Afferent arteriole
- Branch of interlobular artery
- Glomerulus
- Efferent arteriole
- Peritubular capillaries
- Vasa recta only on juxtamedullary nephrons

The Kidneys

The Blood Supply to the Kidneys

The Nephron


- · Basic functional unit of the kidney
- Two parts to the nephron
 - Renal corpuscle
 - Used in glomerular filtration
 - Renal tubule
 - Used in tubular secretion and reabsorption
- Feeds into collecting system


The Kidneys

Pathway of fluid (resulting in urine) through the Nephron

- First, filtered in the renal corpuscle
 - Urine begins as filtrate
- Next, filtrate flows into renal tubule
 - First, into the *proximal convoluted tubule* (PCT)
 - Next, the loop of Henle
 - Finally, the distal convoluted tubule (DCT)
- · Last, exits to collecting duct

A Representative Nephron and the Collecting System

The Kidneys

Functions of the Nephron

- Production of *filtrate*Glomerulus
- Reabsorption of nutrients
 - PCT (only location ... impact???)
- Reabsorption of *water* and *ions* PCT, DCT, collecting duct
- Secretion of ions, drugs, toxins, acids
 DCT, collecting duct

The Kidneys

Parts of the Renal

- Corpuscle Glomerulus
 - Knot of interconnected capillaries with a spherical shape
- Bowman's capsule
 Encloses glomerulus
 - Encloses glomerulus with squamous epithelium
- Afferent arteriole
 Blood supply to glomerulus
- *Efferent* arteriole
 - Blood drainage from glomerulus

Figure 18-5

Glomerulus Anatomy

- Glomerular capillaries covered by podocytes
 - Narrow slits separate foot processes of podocytes
- Capsular space surrounds glomerulus
 - Filtrate accumulates here
 - Bounded by Bowman's capsule

The Kidneys

Proximal Convoluted Tubule

- Reabsorbs critical substances from filtrate
 - Nutrients (e.g., glucose, amino acids)
 - lons
 - Proteins
- Releases them into surrounding interstitial fluid
- Enter peritubular capillaries and return to blood stream

The Kidneys

Loop of Henle

- Descending limb
 - Permeable to water
- Ascending limb
 - Impermeable to water and solutes

Distal Convoluted Tubule (DCT)

- Transport activities
 - Actively secretes substances into urine
 - Actively reabsorbs sodium from urine
- Juxtaglomerular apparatus
 - Releases renin, erythropoietin
 - Located at start of DCT

The Kidneys

Collecting Ducts

- Receive urine from nephrons
- Merge into papillary ducts
 - Delivers urine to minor calyx
- · Adjust final osmotic pressure of urine
 - By reabsorbing water
 - By transporting ions

Principles of Urine Production

Primary Purpose of Urine Production

- Excretion of dissolved solutes
 - Metabolic wastes
 - Urea
 - Creatinine
 - Uric acid
 - Excess ions

Processes in Urine Formation to meet the primary purpose

- Filtration
- Reabsorption
- Secretion

Filtration at the Glomerulus

- Blood pressure forces fluid and dissolved substances across the endothelial wall of glomerular capillaries into the capsular space
- Glomerular filtration rate (GFR) depends on blood pressure
- Any change in blood pressure affects filtration

Principles of Urine Production

Renin Release

- Decline in filtration pressure (blood pressure) triggers renin release
 - Released by juxtaglomerular apparatus
- Renin leads to increased blood volume and blood pressure
- GFR returns toward normal
- Restores homeostasis

Principles of Urine Production

Key Note

Roughly **180 liters** of filtrate is produced at the glomeruli each day. That represents 70 times the total plasma volume. Almost all of that fluid volume must be reabsorbed to avoid fatal dehydration.

Tubular Reabsorption/Secretion

- PCT reabsorbs 60-70% of filtrate
 - Nutrients
 - Sodium, other ions
 - Water
- Releases them into venous drainage for return to the blood stream
- Also, PCT secretes substances into tubular fluid

Principles of Urine Production

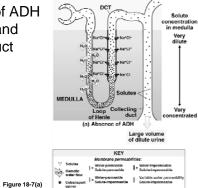
Tubular Reabsorption/Secretion (cont'd)

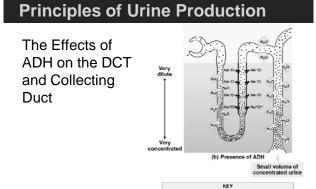
- Loop of Henle
 - Reclaims water, ions from filtrate
 - Ascending limb pumps out sodium and chloride ions
 - · Descending limb absorbs water
 - Interstitial osmotic pressure pulls water from tubular fluid
 - Urea concentration rises as fluid is lost

Principles of Urine Production

Tubular Reabsorption/Secretion (cont'd)

- Distal Convoluted Tubule (DCT)
 - Performs final adjustment
 - · Secretes or reabsorbs ions
 - Reabsorbs sodium in exchange for secreted potassium and hydrogen ions
 - Aldosterone increases sodium reabsorption and potassium loss


Control by Antidiuretic Hormone (ADH)

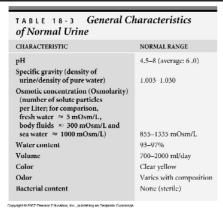

- Regulates water loss
 - DCT, collecting tubule, collecting duct made permeable to water by ADH
 - Water then exits to interstitial fluid and remains in the body
 - Urine becomes concentrated (low in water, high in solute)
 - The higher the ADH level, the more concentrated the urine

Principles of Urine Production

COBTEX

The Effects of ADH on the DCT and Collecting Duct

Figure 18-7(b)


Colmangent I - Weterspectation
 Solute impermetation
 Colmangent I - Solute impermetation
 Colmangent D 2007 Pearson Education, Inc., publishing as Renjamin Cumming

Osmolia B

Water Balance in the Kidney

- More than 99% of water is reabsorbed from the filtrate by the renal tubules
- Water content of normal urine ranges from 93% to 97%

Principles of Urine Production

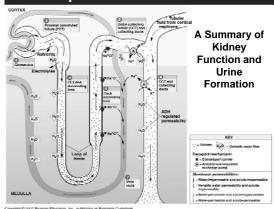


Figure 18-8

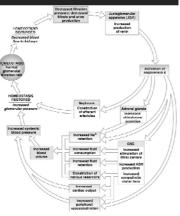
Principles of Urine Production

Key Note

Reabsorption depends on diffusion, osmosis, and active transport. If the mechanism of water reabsorption is "water follows salt" (actually water follows any ion) it is said to be **obligatory** reabsorption. If water reabsorption is mediated by water channels it is called **facultative** reabsorption. Many of these processes are regulated by local or hormonal mechanisms. Secretion is a selective, carrier-mediated process.

Principles of Urine Production

Vascular Control of Kidney Function


- Automatic regulation of filtration pressure by changes in diameter of afferent and efferent arterioles
- Autonomic regulation by sympathetic activation
 - Powerful vasoconstriction of afferent arterioles
 - Decreases GFR
 - Also, redirects blood flow to other organs


Principles of Urine Production

Hormonal Control of Kidney Function

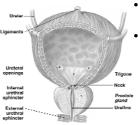
- Angiotensin II
- Aldosterone
- ADH
- Atrial natriuretic peptide (ANP)

Roles of the Renin-Angiotensin System in the Regulation of GFR

Transport, Storage, & Excretion

Transport and Storage of Urine

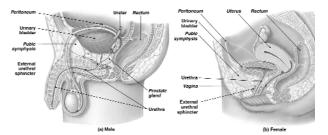
- Urine modification ends when fluid enters the renal pelvis
- Ureters, urinary bladder, urethra specialized for transport, storage, and excretion of urine


Transport, Storage, & Excretion

Ureters

- Ureters extend from renal pelvis to urinary bladder
- Smooth muscle in walls contract *peristaltically*
- Push urine toward bladder

Transport, Storage, & Excretion


Urinary Bladder

- Distensible muscular sac for urine storage
- Internal features include
 Trigone
 - Neck
 - Internal urethral sphincter
 - Detrussor muscle
 - Contraction forces urine into urethra

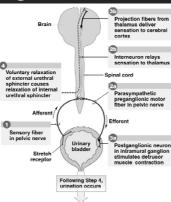
Transport, Storage, & Excretion

Organs for the Conduction and Storage of Urine

Transport, Storage, & Excretion

The Urethra

- Longer in males than females
- External urethral sphincter formed by a circular band of skeletal muscle of pelvic floor
- Under voluntary control


Transport, Storage, & Excretion

Micturition Reflex and

Urination

- Urination coordinated
 by micturition reflex
- Initiated by stretch
 - Initiated by steeld receptors in the bladder wall
 Voluntary urination couples reflex with relaxation of external urinary sphincter
 Permits internal

urinary sphincter to open

Aging and the Urinary System

Age-Related Changes in Urinary System

Copyright @ 2007 Pearson Ed

- Loss of functional nephrons
- Reduced GFR
- Reduced response to ADH
- Urinary retention in men with prostate enlargement
- Drop in body water and mineral content
- Disorders of fluid, electrolyte, or acid-base balance