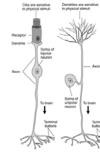
The Nervous System - 2

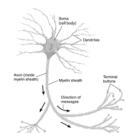
Organization, Function & Communication

Agenda


- Nervous Tissue
 - Classification of Neurons
 - Neuroglia
- Neuron Function
- Neural Communication
- Review

Nervous Tissue

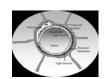
- Structural Classification of Neurons
 - Classified based on processes off of soma
 - Many = multipolar
 - Two = bipolar
 - One = unipolar/pseudounipolar


Nervous Tissue

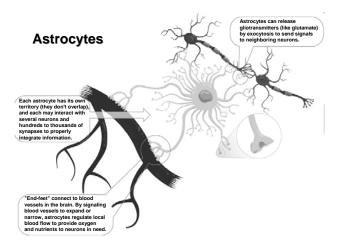
- Functional Classification of Neurons
 - Sensory
 - 10 million neurons receive information from sensory receptors
 - · Divided into
 - Somatic Sensory Receptors
 - » External receptors
 - (exteroceptors)
 - » Proprioceptors
 - Visceral Sensory Receptors » Internal receptors (interoceptors)

Nervous Tissue

- · Functional Classification of Neurons
 - Interneurons 20 billion neurons involved in integrative brain function May be commissural, associative or projection neurons
 - Motor
 - 500,000 motor neurons · Divided into somatic and visceral

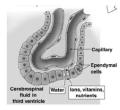


Nervous Tissue

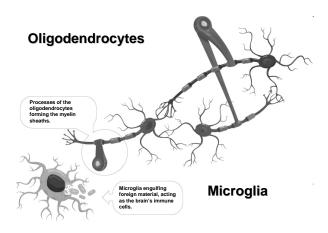

- Neuroglia
 - Cells that play an important supporting role in the nervous system
 - Grouped according to location
 - CNS

 - AstrocytesOligodendrocytes
 - Ependymal Cells
 - Microglia
 - PNS
 - Satellite Cells
 - Neurolemmocytes (Schwann Cells)

CNS Neuroglia

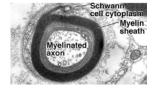


- Astrocytes
 - Local regulation of blood flow and support of the endothelial cells
 - aid in formation of blood brain barrier (BBB)
 - Regulate ion balance
 - Recycle neurotransmitters
 - Responsible for guiding and modulating synapse formation
 - Promote oligodendrocyte activity (myelination)
 - Phagocytosis of damaged neurons and formation of glial scars


CNS Neuroglia

- Ependymal Cells
 - Line areas within the brain ventricles and are responsible for the production of cerebrospinal fluid (CSF)

CNS Neuroglia


- · Oligodendrocytes
 - create the myelin sheath around axons in the CNS
 - processes, not the entire cell form the sheath
- Microglia
 - small phagocytic and migratory cells within the CNS
 - provide immune function

PNS Neuroglia

- Neurolemmocytes (aka Schwann cells)
 - Provide myelination within the PNS
 - Entire cell wraps the axon
 - Creates a "regeneration tube"
 - Allows regeneration of damaged axon
 - Responsible for return of sensation after peripheral nerve damage
- Satellite Cells
 - Provide support for neurons in the PNS
 - Located at ganglia

Neurolemmocyte

Neurolemmocyte vs. Oligodendrocyte

Neuron Function

Three things a neuron must do to function properly

- 1. receive input from sensory structure or another neuron
- 2. integrate information
- 3. create (or don't) an action potential

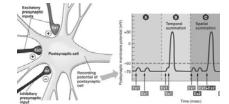
Neuron Function

Receive

- Synaptic input on the soma (dendrites & cell body)
- May be an
 - Excitatory post synaptic potential (EPSP)*
 - Inhibitory post synaptic potential (IPSP)*

*these are graded potentials and as such

- ✓ can be graded in the size of the electrical event
- \checkmark will diminish over both space and time
- ✓ travel in all directions across the soma

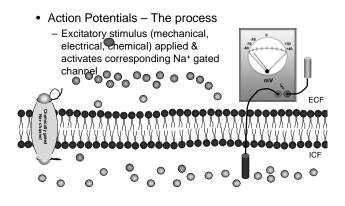

Neuron Function

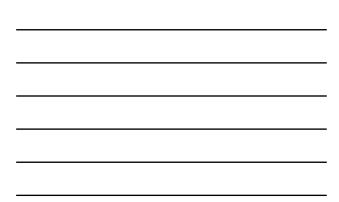
Integrate Information What information? the EPSP's and IPSP's How?

> their summation either spatially or temporally to create a GPSP at the axon hillock which contains threshold voltage gated channels

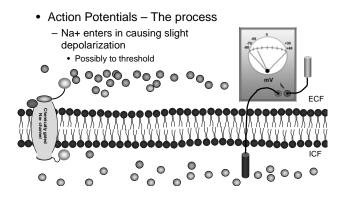
Neuron Function

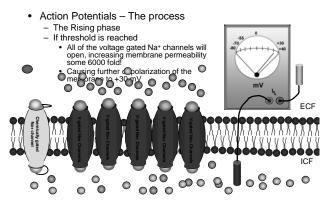
• Spatial and Temporal Summation

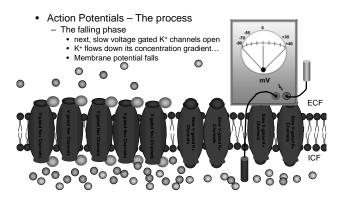

Neuron Function

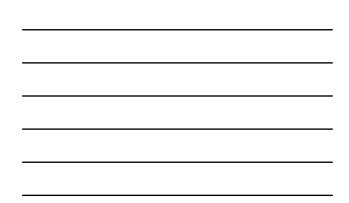

Action Potential creation

- At axon hillock, if the GPSP is excitatory the voltage 1. gated Na+ channels open, allowing rapid influx of Na+
- Membrane is depolarized in the depolarizing phase (rising phase) of the action potential

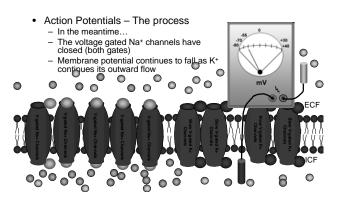

 Charge goes from resting membrane potential of -70mV to max depolarized state (overshoot phase) of +30mV
 Delayed voltage gated K+ channels open, allowing K+
- to efflux from the cell during the repolarizing (falling phase) of the action potential
 - a. Charge goes from +35mV to -80mv as the K+ rapidly leaves the cell, creating a brief hyperpolarizing event (undershoot phase)
- This is restored as the Na+/K+ ATPase (pump) works b. 4. Membrane potential is returned to resting value

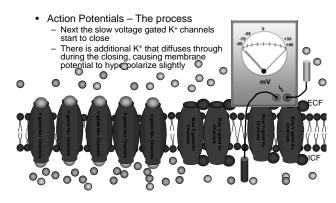

Action Potential Animation

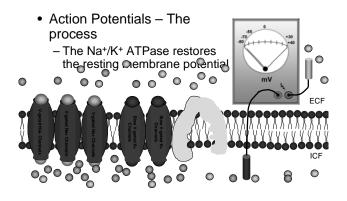


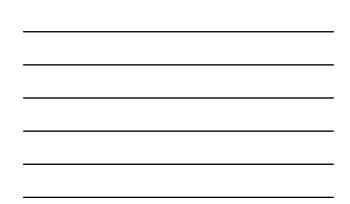


Potentials in Electrical Signaling

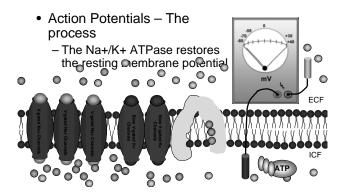


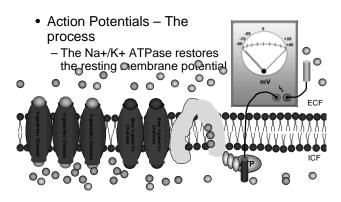


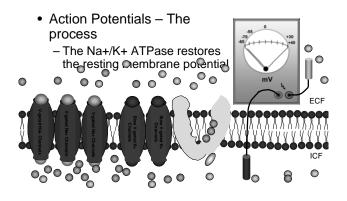




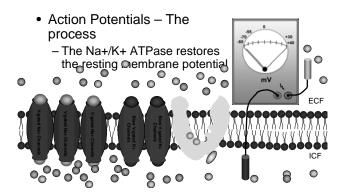
Potentials in Electrical Signaling

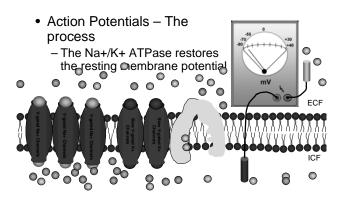




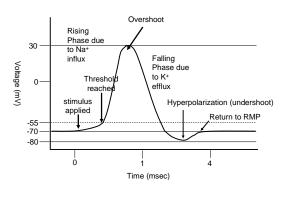


Potentials in Electrical Signaling



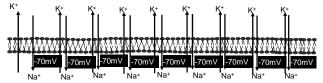


Potentials in Electrical Signaling



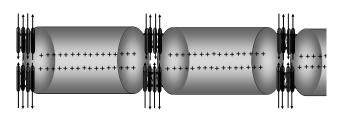


Neuron Function Anatomy of an Action Potential


Neuron Function

- Action Potentials The process
 - This process, will occur along the entire length of the excitable cell membrane • As long as it has...
 - The local influx of Na+ will cause the next adjacent voltage gated channels to open, cascading to the end of the membrane

\overline{WW}						V0000	000000	200000	00000
	3605mW	3505mW	3505mW	3505mNV	355₩	:\$55mV	-359mV	305m//	-50mV
Na⁺ Na⁺ Na⁺ Na⁺ Na⁺ Na⁺ Na⁺ Na⁺ Na⁺ Na									


Neuron Function

- Action Potentials The process - What happens when it gets to the end of the membrane?
 - The signal is transduced
 - And a chemical signal is generated
 - The prior sections of membrane are finishing up, getting back to resting membrane potential as K⁺ effluxes

Neuron Function

• Saltatory Conduction

Neuron Function

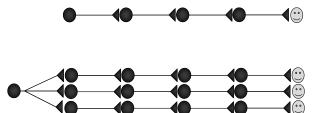
- · Characteristics of the action potential
 - all-or-none
 - non-decremental
 - unidirectional
 - magnitude is steady
 - No increase or decrease in a created action potentials depolarization

Neuron Communication

- So.... How does all of this action potential stuff allow for communication between excitable tissues?
 - It allows for the release of neurotransmitters from the terminal button (synaptic bulb)
 - No action potential, no release, no communication
- Excitable tissues have gated channels that respond to the neurotransmitter released by the terminal button
- Neurotransmitters may be excitatory and inhibitory •
- Depends on the receptor on the post-synaptic membrane · Synapses may be
 - Excitatory
 Inhibitory

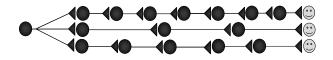
 - Never both at the same time!

Neural Communication

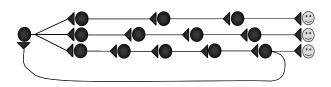

- · Neural pathways may be classified as
 - Sensory
 Motor

 - Integrative
- Structurally they may be

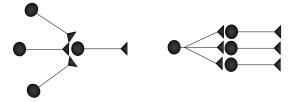
 - Structurally they may be Series Parallel Convergent Divergent Reverberating (oscillating) Parallel after discharge


Neural Communication

• Serial & Parallel Circuits


Neural Communication

• Parallel After Discharge Circuit


Neural Communication

• Reverberating (Oscillating) Circuits

Neural Communication

• Convergent & Divergent Circuits

The Big Picture

• It's this simple... (times 1 or 200 billion)

