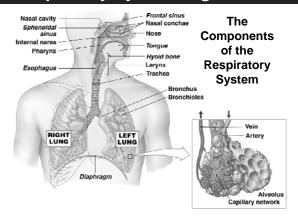
Respiratory System Functions

Functions of Respiratory System


- Gas exchange between blood and air
- Move air to and from exchange surfaces
- Protect exchange surfaces from environmental variations and pathogens
- Produce sound
- Detect olfactory stimuli
- Produce ACE (Angiotensin Converting Enzyme)

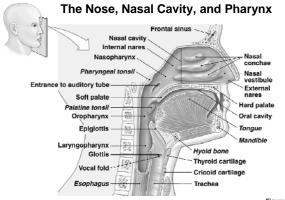
Respiratory System Organization

Components of the Respiratory System

- Nose, nasal cavity, and paranasal sinuses
- Pharynx
- Larynx
- Trachea, bronchi
- Lungs
 - Bronchioles
 - Alveoli (gas exchange)

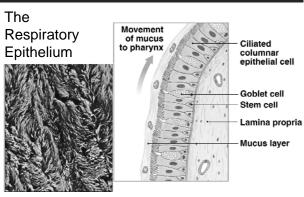
Respiratory System Organization

The Respiratory Tract


- · Conducting portion
 - Conduct the air movement
 - From nares to small bronchioles
- · Respiratory portion
 - Gas exchange region
 - Respiratory bronchioles and *alveoli*

Respiratory System Organization

The Nose


- External nares (nostrils) admit air
 - Nasal vestibule lined with hairs to filter air
- Vestibule opens into nasal cavity
 - Hard palate separates nasal and oral cavities
- Cavity continues through *internal nares* to *nasopharynx*
 - Soft palate underlies nasopharynx
- Respiratory epithelium lines the airways

Respiratory System Organization

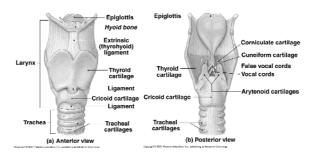
Respiratory Mucosa

- Respiratory epithelium plus supporting connective tissue with mucous glands
 - · Lines nasal cavity and most of airways
 - Goblet and gland cells secrete mucus
 - Mucus traps inhaled dirt, pathogens, etc.
 - Ciliated cells sweep the mucus out of the airways into pharynx
 - Irritants stimulate secretion
 - · Causes "runny nose"

Respiratory System Organization

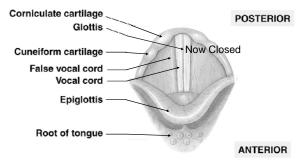
Respiratory System Organization

Three Regions of the Pharynx

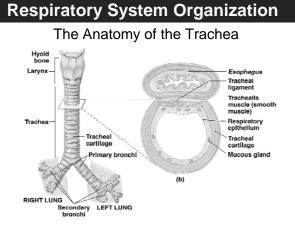

- Nasopharynx
 - Respiratory system only
- Oropharynx
 - Shared with digestive system
 - Opens into *both* esophagus and larynx
- Laryngopharynx

The Larynx

- · Also called, "voice box"
- Made of nine cartilages
- Air passes through glottis
- Covered by epiglottis during swallowing
 - Keeps solids, liquids out of airways
 - Made of elastic cartilage
- Supports true vocal cords
 - Exhaled air vibrates them to make sound


Respiratory System Organization

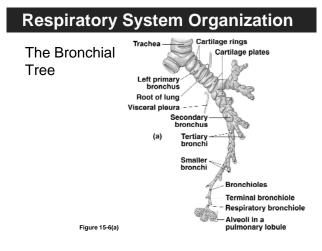
The Anatomy of the Larynx and Vocal Cords


Respiratory System Organization

The Anatomy of the Larynx and Vocal Cords

The Trachea

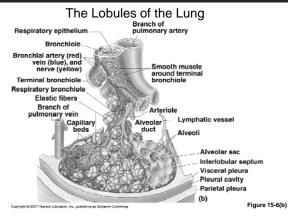
- · Also called "windpipe"
- Stiffened by C-shaped cartilage rings
- Esophagus stuck to posterior surface
 - Cartilage missing there
 - Trachea distorted by balls of food as they pass down esophagus to stomach

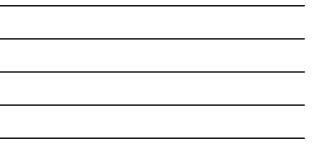

Respiratory System Organization

The Bronchi

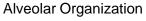
- Trachea forms two branches
 Right and left *primary bronchi*
- Primary bronchi branch
 - Form secondary bronchi
 - Each ventilates a lobe
- Secondary bronchi branch
- Form tertiary bronchi
- Tertiary bronchi branch repeatedly
 - Cartilage decreases, smooth muscle increases

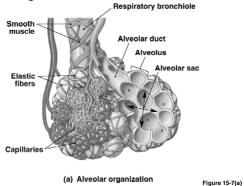
The Bronchioles


- · Cartilage absent
- Diameter < 1.0 mm
- Terminal bronchioles deliver air to a single lobule
- Smooth muscle in wall controlled by ANS
 - Sympathetic causes bronchodilationParasympathetic causes
 - bronchoconstriction
- Excess bronchoconstriction is asthma



Respiratory System Organization


The Alveolar Ducts and Alveoli

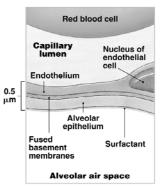

- · Gas exchange regions of lung
- Respiratory bronchioles lead into alveolar ducts
- Ducts lead into alveolar sacs
- Sacs are clusters of interconnected *alveoli*
 - Gives lung an open, spongy look
 - About 150 million/lung

Respiratory System Organization

Respiratory System Organization

Alveo

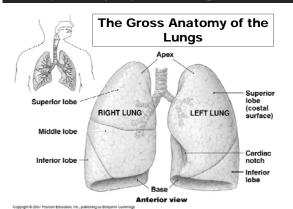
Anatomy of the Alveolus

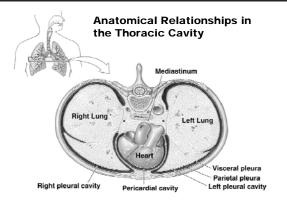

Respiratory Membrane

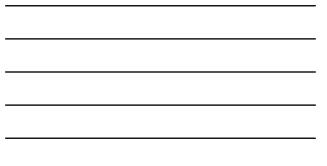
- Simple
- squamous epithelium • Capillary
- endotheliumShared basement
- membrane
- Septal cells
 - Produce surfactant to reduce collapse
- Alveolar
 - macrophagesEngulf foreign particles

lar macrophage Endothelial cell of capillary

The Respiratory Membrane




Respiratory System Organization


Lung Gross Anatomy

- Lungs comprise five lobes
 - Separated by deep fissures
 - three lobes on right, two on left
- Apex extends above first rib
- Base rests on diaphragm
- Covered by a serous visceral pleura
- Lie with pleural cavities
- Lined by a serous parietal pleura

Respiratory System Organization

Respiratory Physiology

Three Integrated Processes

- *Pulmonary ventilation*—Moving air into and out of the respiratory tract; breathing
- Gas exchange Diffusion between alveoli and circulating blood, and between blood and interstitial fluids
- Gas transport—Movement of oxygen from alveoli to cells, and carbon dioxide from cells to alveoli

Respiratory Physiology

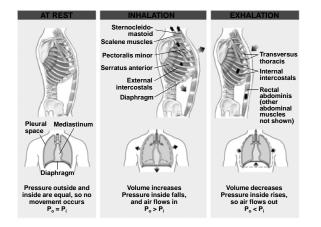
Pulmonary Ventilation

- *Respiratory cycle*—A single breath consisting of *inspiration* (inhalation) and *expiration* (exhalation)
- Respiratory rate—Number of cycles per minute
 - Adult normal rate 12 to 18 breaths/minute
 - Child normal rate 18 to 20 breaths/minute
- Alveolar ventilation—Movement of air into and out of the alveoli

Key Note

The direction of air flow is determined by the relationship of atmospheric pressure and pressure inside the respiratory tract. Flow is always from higher to lower pressure.

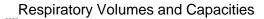

Respiratory Physiology

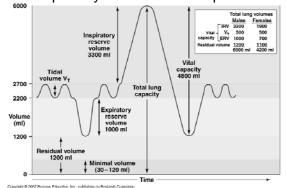

Quiet versus Forced Breathing

- Quiet breathing—Diaphragm and external intercostals are involved. Expiration is passive.
- Forced breathing—Accessory muscles become active during the entire breathing cycle. Expiration is *active*.

Respiratory Physiology

Pressure and Volume Relationships in the Lungs

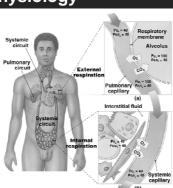




Capacities and Volumes

- Vital capacity—Tidal volume + expiratory reserve volume + inspiratory volume
 VC = TV + ERV + IRV
- *Residual volume*—Volume of air remaining in the lung after a forced expiration

Respiratory Physiology



Gas Exchange

- *External respiration*—Diffusion of gases between alveolar air and pulmonary capillary blood across the respiratory membrane
- *Internal respiration*—Diffusion of gases between blood and interstitial fluids across the capillary endothelium

Respiratory Physiology

An Overview of Respiration and Respiratory Processes

Respiratory Physiology

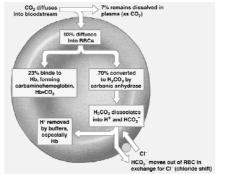
TABLE 15-1 Partial Pressures (mm Hg) and Normal Gas Concentrations (%) in Air				
OURCE OF SAMPLE	NITROGEN (N ₂)	OXYGEN (O ₂)	WATER VAPOR (H ₂ O)	CARBON DIOXIDI (CO ₂)
nhaled air (dry)	597 (78.6%)	159 (20.9%)	3.7 (0.5%)	0.3 (0.04%)
dveolar air (saturated)	573 (75.4%)	100 (13.2%)	47 (6.2%)	40 (5.2%)
xhaled air (saturated)	569 (74.8%)	116 (15.5%)	47 (6.2%)	28 (3.7%)

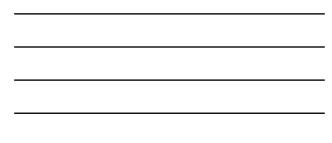
Gas Transport

- Arterial blood entering peripheral capillaries delivers oxygen and removes carbon dioxide
- Gas reactions with blood are completely reversible
- In general, a small change in plasma P_{O2} causes a large change in how much oxygen is bound to hemoglobin

Respiratory Physiology

Key Note

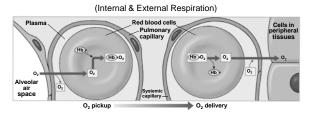

Hemoglobin binds most of the oxygen in the bloodstream. If the P_{O_2} in plasma increases, hemoglobin binds more oxygen; if P_{O_2} decreases, hemoglobin releases oxygen. At a given P_{O_2} hemoglobin will release additional oxygen if the pH falls or the temperature rises.


Respiratory Physiology

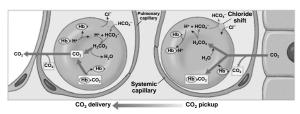
Carbon Dioxide Transport

- Aerobic metabolism produces CO₂
- 7% travels dissolved in plasma
- 23% travels bound to hemoglobin
 - Called carbaminohemoglobin
- 70% is converted to H₂CO₃ in RBCs
 - Catalyzed by carbonic anhydrase
 - Dissociates to H⁺ and HCO₃⁻
 - HCO_3^- enters plasma from RBC

Carbon Dioxide Transport in the Blood


Respiratory Physiology

Key Note


Carbon dioxide (CO_2) primarily travels in the bloodstream as bicarbonate ions (HCO_3^{-}) , which form through dissociation of the carbonic acid (H_2CO_3) produced by *carbonic anhydrase* inside RBCs. Lesser amounts of CO_2 are bound to hemoglobin or dissolved in plasma.

Respiratory Physiology

Transport & Uptake of Oxygen

Uptake, Transport & Removal of CO₂

The Control of Respiration

Meeting the Changing Demand for Oxygen

- Requires integration cardiovascular and respiratory responses
- Depends on both:
 - Local control of respiration
 - Control by brain respiratory centers

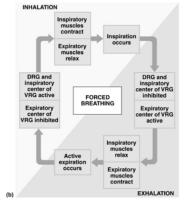
The Control of Respiration

Local Control of Respiration

- Arterioles supplying pulmonary capillaries *constrict* when oxygen is low
- Bronchioles *dilate* when carbon dioxide is high

The Control of Respiration

Control by Brain Respiratory Centers


- Respiratory centers in brainstem
 - Three pairs of nuclei
 - Two pairs in pons
 - One pair in medulla oblongata
 - Control respiratory muscles
 - Set rate and depth of ventilation
 - · Respiratory rhythmicity center in medulla
 - Sets basic rhythm of breathing

Basic INHALATION (2 seconds) Regulatory Patterns of Inspiratory muscles Respiration Dorsal spiratory group nhibited QUIET BREATHING group Inspiratory Passive xpiration relax EXHALATION (3 seconds) (a)

The Control of Respiration

The Control of Respiration

Basic Regulatory Patterns of Respiration

The Control of Respiration

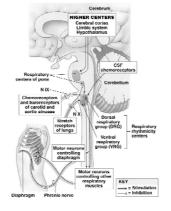
Reflex Control of Respiration

- Inflation reflex
 - Protects lungs from overexpansion
- Deflation reflex
 - Stimulates inspiration when lungs collapse
- Chemoreceptor reflexes
 - Respond to changes in pH, P_{O2} , and $\mathsf{P}_{\mathsf{CO2}}$ in blood and CSF

The Control of Respiration

Control by Higher Centers

- Exert effects on pons or on respiratory motorneurons
 - · Voluntary actions
 - Speech, singing
 - Involuntary actions through the limbic system
 - Rage, eating, sexual arousal


The Control of Respiration

Key Note

Interplay between respiratory centers in the pons and medulla oblongata sets the basic pace of breathing, as modified by input from chemoreceptors, baroreceptors, and stretch receptors. CO_2 level, rather than O_2 level, is the main driver for breathing. Protective reflexes can interrupt breathing and conscious control of respiratory muscles can act as well.

The Control of Respiration

The Control of Respiration

Respiratory Changes at Birth

Conditions Before Birth

- · Pulmonary arterial resistance is high
- Rib cage is compressed
- · Lungs are collapsed
- · Airways, alveoli are filled with fluid

Conditions After Birth

- An *heroic* breath fills lungs with air, displaces fluid, and opens alveoli
- · Surfactant stabilizes open alveoli

Respiratory System and Aging

Respiratory System Loses Efficiency

- Elastic tissue deteriorates
 Lowers vital capacity
- Rib cage movement restricted
 - Arthritic changes
 - Costal cartilages loses flexibility
- · Some emphysema usually appears