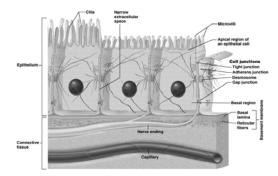
Histology

Tissues

- Cells work together in functionally related groups called tissues
- Types of tissues:
 - 1. Epithelial lining and covering
 - 2. Connective support
 - 3. Muscle movement
 - 4. Nervous control

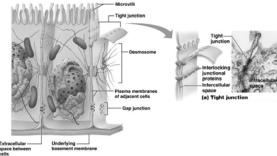

Epithelial Tissue – General Characteristics & Functions

- Covers a body surface or lines a body cavity
- Forms most glands
- Functions of epithelium
 Protection
 Absorption, secretion, and ion transport
 Filtration
 - $\square \, \text{Forms slippery surfaces}$

Special Characteristics of Epithelia

- Cellularity
 - cells are in close contact with each other with little or no intercellular space between them
- Specialized contacts
- may have junctions for both attachment and communication
 Polarity
- epithelial tissues always have an apical and basal surface
 Support by connective tissue
 - □ at the basal surface, both the epithelial tissue and the connective tissue contribute to the basement membrane
- Avascular
 nutrients must diffuse
- Innervated
- Regeneration
 - epithelial tissues have a high capacity for regeneration

Special Characteristics of Epithelia

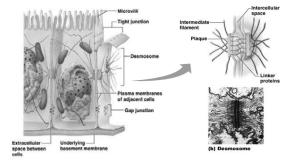

Lateral Surface Features

- Factors holding epithelial cells together
 - □Adhesion proteins link plasma membranes of adjacent cells
 - □Contours of adjacent cell membranes
 - □ Special cell junctions
 - Tight Junctions
 - Adherens Junctions
 - Desmosomes

Lateral Surface Features – Cell Junctions

- Tight junctions (zona occludens) close off intercellular space
 - $\square \mbox{Found}$ at apical region of most epithelial types
 - Some proteins in plasma membrane of adjacent cells are fused
 - □ Prevent molecules from passing between cells of epithelial tissue

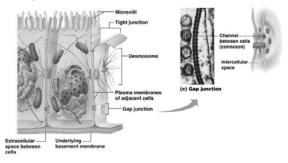
Tight Junction


Lateral Surface Features – Cell Junctions

- Adherens junctions (zonula adherens) anchoring junction
 - Transmembrane linker proteins attach to actin microfilaments of the cytoskeleton and bind adjacent cells
 - □ Along with tight junctions, form the tight junctional complex around apical lateral borders of epithelial tissues

Lateral Surface Features – Cell Junctions

- Desmosomes two disc-like plaques connected across intercellular space
 Regues of adjoining colls are joined by
 - □ Plaques of adjoining cells are joined by proteins called cadherins
 - $\square \operatorname{\mathsf{Proteins}}$ interdigitate into extracellular space
 - □ Intermediate filaments insert into plaques from cytoplasmic side

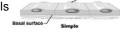

Desmosome

Lateral Surface Features – Cell Junctions

- Gap junctions passageway between two adjacent cells
 - Let small molecules move directly between neighboring cells
 - □Cells are connected by hollow cylinders of protein

Gap Junction

Basal Feature: The Basal Lamina


- Noncellular supporting sheet between the epithelium and the connective tissue deep to it
- Consists of proteins secreted by the epithelial cells
- Functions:
 - \square Acts as a selective filter, determining which molecules from capillaries enter the epithelium
 - Acts as scaffolding along which regenerating epithelial cells can migrate
- Basal lamina and reticular layers of the underlying connective tissue deep to it form the basement membrane

Epithelial Tissues

Classifications & Naming of Epithelia

 First name of tissue indicates number of layers

 $\hfill Simple - one \hfill a get of cells$

□ Stratified – more than one layer of cells

0	0	0	0	0	
0	0	0	0	20	0
2 6	> (2	DIC	DI.	a
0	0	0	0	0	T
Dasal surfa	ice_	Stratifi	ed		

Classification & Naming of Epithelia

Last name of tissue describes shape of cells

□ Squamous – cells wider than tall (plate or "scale" like)

- □Cuboidal cells are as wide as tall, as in cubes
- Columnar cells are taller than they are wide, like columns

Naming Epithelia

- Naming the epithelia includes both the layers (first) and the shape of the cells (second)
 i.e. stratified cuboidal epithelium
- The name may also include any accessory structures
 - Goblet cells
 - □ Cilia
 - □ Keratin
- Special epithelial tissues (don't follow naming convention)
 - □ Psuedostratified
 - Transitional

Simple Squamous Epithelium

Description

□ single layer of flat cells with disc-shaped nuclei

Special types

□Endothelium (inner covering)

- slick lining of hollow organs
- □ Mesothelium (middle covering)
 - Lines peritoneal, pleural, and pericardial cavities
 - Covers visceral organs of those cavities

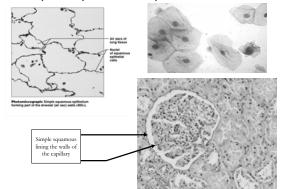
Simple Squamous Epithelium

Function

□ Passage of materials by passive diffusion and filtration

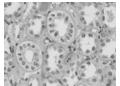
 \square Secretes lubricating substances in serosae

Location


□Renal corpuscles

□ Alveoli of lungs

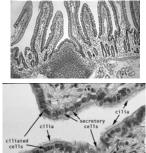
□ Lining of heart, blood and lymphatic vessels


□Lining of ventral body cavity (serosae)

Simple Squamous Epithelium

Simple Cuboidal Epithelium

- Description
 - □ single layer of cube-like cells with large, spherical central nuclei
- Function
 - secretion and absorption
- Location
 - kidney tubules, secretory portions of small glands, ovary & thyroid follicles



Simple Columnar Epithelium

- Description
 - □ single layer of column-shaped (rectangular) cells with oval nuclei
 - Some bear cilia at their apical surface
 - May contain goblet cells
- Function
 - □ Absorption; secretion of mucus, enzymes, and other substances
 - □ Ciliated type propels mucus or reproductive cells by ciliary action

Simple Columnar Epithelium

- Location
 - □Non-ciliated form
 - Lines digestive tract, gallbladder, ducts of some glands
 - □ Ciliated form
 - Lines small bronchi, uterine tubes, uterus

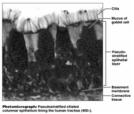
Pseudostratified Columnar Epithelium

Description

□ All cells originate at basement membrane

- \square Only tall cells reach the apical surface
- May contain goblet cells and bear cilia
- □ Nuclei lie at varying heights within cells
- Gives false impression of stratification
- Function □ secretion of mucus; propulsion of mucus by cilia

Pseudostratified Columnar Epithelium


Locations

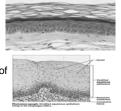
□ Non-ciliated type

 Ducts of male reproductive tubes

Ducts of large glands

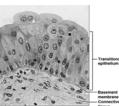
- □Ciliated variety
 - Lines trachea and most of upper respiratory tract

Stratified Epithelia


- Contain two or more layers of cells
- Regenerate from below
- Major role is protection
- Are named according to the <u>shape of cells</u> <u>at apical layer</u>

Stratified Squamous Epithelium

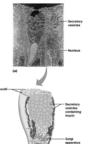
- Description
 - □ Many layers of cells squamous in shape □ Deeper layers of cells appear cuboidal or
 - columnar Thickest epithelial tissue – adapted for protection


Stratified Squamous Epithelium

- Specific types
 - □ Keratinized contain the protective protein keratin ■ Surface cells are dead and full of keratin
 - $\hfill\square$ Non-keratinized forms moist lining of body openings
- Function
 - Protects underlying tissues in areas subject to abrasion
- Location
 - Keratinized forms epidermis
 Non-keratinized forms lining of
 - esophagus, mouth, and vagina

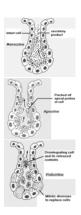
Transitional Epithelium

- Description
 - Basal cells usually cuboidal or columnar
 - Superficial cells domeshaped or squamous
- Function
 - stretches and permits distension of urinary bladder
- Location
 - □ Lines ureters, urinary bladder and part of urethra



Glandular Epithelium

- Ducts carry products of exocrine glands to epithelial surface
- Include the following diverse glands
 Mucus-secreting glands
 Sweat and oil glands
 Salivary glands
 - □ Liver and pancreas
 - ☐ Mammary glands
- May be: unicellular or multicellular


Unicellular Exocrine Glands (The Goblet Cell)

- Goblet cells produce mucin
- Mucin + water → mucus
- Protects and lubricates many internal body surfaces

Multicellular Exocrine Glands

- Classified by structure (branching & shape) of duct
- Can also be classified by mode or type of secretion
 - Merocrine secretion secretory vesicles released via exocytosis (saliviary glands)
 - Apocrine secretion apical portion of the cell is lost, cytoplasm + secretory product (mammary glands)
 - Holocrine secretion entire cell is destroyed during secretion (sebaceous gland)

May also be classified by types of secretions from exocrine glands

- Serous
 - \square mostly water but also contains some enzymes \square Ex. parotid glands, pancreas
- Mucous
 mucus secretions
 Ex. sublingual glands, goblet cells
- Mixes
 serous & mucus combined
 Ex. submandibular gland

Connective Tissues

Connective Tissue

Most diverse and abundant tissue

Main classes

- Connective tissue proper
- □ Blood Fluid connective tissue
- □ Cartilage □ Bone tissue Supporting connective tissues
- Bone tissue _____
 Components of connective tissue:
 Cells (varies according to tissue)
 - □ Matrix
 - Protein fibers (varies according to tissue)
 - Ground substance (varies according to tissue)
- Common embryonic origin mesenchyme

Classes of Connective Tissue

Common embryonic origin:	Mesenchyme					
Cellular descendants:	Fibroblast	Chondroblast	Osteoblast	Hematopoletic stem cell		
	Fibrocyte	Chondrocyte		Blood cells' (and macrophages		
Class of connective tissue resulting:	Connective tissue proper	Cartilage	Osseous (bone)	Blood		
	1. Loose connective tissue	1. Hyaline cartilage	1. Compact bone	* Blood cell formation and differentiation are		
	Types: Areolar Adipose Reticular 2. Dense connective	2. Fibrocartilage 3. Elastic cartilage	2. Spongy (cancellous) bone	quite complex. Details are provided in Chapter 17.		
	tissue Types: Regular Irregular Elastic					

Connective Tissue Proper - Structures

- Variety of cells, fibers & grounds substances
- □ Types of depend on use
- Cells found in connective tissue proper □ Fibroblasts

 - Adipocytes (fat cells)
 - □ Mast cells
 - □ Stem cells
- Fibers:

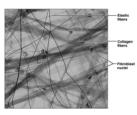
 - □ Collagen very strong & abundant, long & straight □ Elastic branching fibers with a wavy appearance (when relaxed)
 - □ Reticular form a network of fibers that form a supportive framwork in soft organs (i.e. Spleen & liver)
- Ground substance:

 - Along with fibers, fills the extracellular space
 Ground substance helps determine functionality of tissue

Connective Tissue Proper -Classifications

- Loose Connective Tissue
 - □ Areolar
 - □ Reticular
 - □ Adipose
- Dense Connective Tissue
 - □ Regular
 - □ Irregular
 - □ Elastic

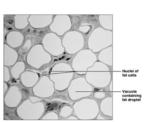
Areolar Connective Tissue


- Description
 - Gel-like matrix with:
 - all three fiber types (collagen, reticular, elastic) for support
 Ground substance is made up by glycoproteins also made and secreted by the fibroblasts.
 - □ Cells fibroblasts, macrophages, mast cells, white blood cells, adipocytes
 - Highly vascular tissue
- Function
 - Wraps and cushions organs
 - $\hfill\square$ Holds and conveys tissue fluid
 - $\hfill\square$ Important role in inflammation
 - \square Main battlefield in fight against infection

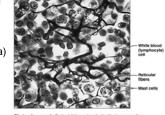
Areolar Connective Tissue

Location

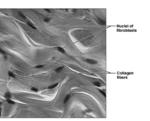
□Widely distributed under epithelia


□ Packages organs □ Surrounds capillaries

Adipose Tissue

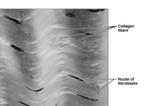

Description

- Closely packed adipocytes
- □ Have nucleus pushed to one
- side by fat droplet Function
- □ Insulates against heat loss
- □ Supports and protects organs
- Location
 - □ Under skin
 - □ Around kidneys
 - Behind eyeballs, within abdomen and in breasts

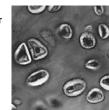


Reticular Connective Tissue

- Description network of reticular fibers in loose ground substance
- Function form a soft, internal skeleton (stroma) – supports other cell types
- Location lymphoid organs
 - □ Lymph nodes, bone marrow, and spleen



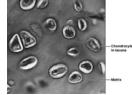
- Dense Irregular Connective Tissue
- Description
 - Primarily irregularly arranged collagen fibers
- Some elastic fibers and fibroblasts
- Function
 - Withstands tension
 - Provides structural strength
- Location
 - Dermis of skin
 - Submucosa of digestive tract
 - Fibrous capsules of joints and organs


Dense Regular Connective Tissue

- Description
 - □ Primarily *parallel* collagen fibers
 - □ Fibroblasts and some elastic fibers
 - Poorly vascularized
- Function
 - □ Attaches muscle to bone
 - □ Attaches bone to bone
 - Withstands great stress in one direction
- Location
 - Tendons and ligaments
 Aponeuroses
 - □ Fascia around muscles

Cartilage

- Characteristics:
 - □ Firm, flexible tissue
 - $\hfill\square$ Contains no blood vessels or nerves
 - □ Matrix contains up to 80% water
 - □ Cell type chondrocyte
- Types:
 - □ Hyaline
 - Elastic
 - □ Fibrocartilage



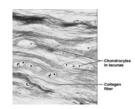
Hyaline Cartilage

Description

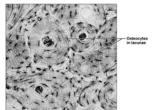
- □ Imperceptible collagen fibers (hyaline = glassy) □ Chodroblasts produce matrix Chondrocytes lie in lacunae
- Function
 - □ Supports and reinforces
 - □ Resilient cushion
 - □ Resists repetitive stress
- Location
 - Ends of long bones □ Costal cartilage of ribs

 - □ Cartilages of nose, trachea, and larynx Location

Elastic Cartilage

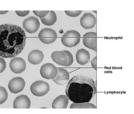

- Description
 - □ Similar to hyaline cartilage
 - □ More elastic fibers in matrix
- Function
 - □ Maintains shape of structure
- □ Allows great flexibility Location
 - □ Supports external ear □ Epiglottis

Fibrocartilage


Description

- Matrix similar, but less firm than hyaline cartilage
- Thick collagen fibers predominate
- Function
- Tensile strength and ability to absorb compressive shock
- Location
 - □ Intervertebral discs
 - □ Pubic symphysis
 - □ Discs of knee joint

Bone Tissue


- Function
 - Supports and protects organs
 - Provides levers and attachment site for muscles
 - □ Stores calcium and other minerals
 - □ Stores fat
 - Marrow is site for blood cell formation
- Location □ Bones

Blood Tissue

Description □ red and white blood cells in a fluid matrix

- Function □ transport of respiratory
- gases, nutrients, and wastes Location
- □ within blood vessels
- Characteristics
 - □ An atypical connective tissue
 - □ Consists of cells surrounded by fluid matrix

Covering and Lining Membranes

- Combine epithelial tissues and connective tissues
- Cover broad areas within body
- Consist of epithelial sheet plus underlying connective tissue

Types of Membranes

- Cutaneous membrane skin
- Mucous membrane □ Lines hollow organs that open to surface of body □ An epithelial sheet underlain with layer of lamina propria
- Serous membrane slippery membranes
 - □ Simple squamous epithelium lying on areolar connective tissue □ Line closed cavities
 - Pleural, peritoneal, and pericardial cavities
- Synovial membranes lining joint cavities
- □ Loose connective (areolar) + simple squamous epithelium Secretes fluid (synovial fluid) which lubricates, protects & cushions joint structures

Muscle Tissue

■ Types

□Skeletal muscle tissue □Cardiac muscle tissue □Smooth muscle tissue

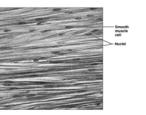
Skeletal Muscle Tissue

- Characteristics
 - □ Long, cylindrical cells □ Multinucleate
 - Obvious striations
- Function
 - Voluntary movement
 - Manipulation of environment
- □ Facial expression Location
 - Skeletal muscles attached to bones (occasionally to skin)

Cardiac Muscle Tissue

Function

Location

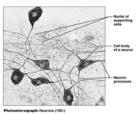

- Contracts to propel blood into circulatory system
- Characteristics □ Branching cells
 - □ Uni-nucleate □ Intercalated discs

□ Occurs in walls of heart

D

Smooth Muscle Tissue

- Characteristics
 - Spindle-shaped cells with central nuclei
 Arranged closely to form sheets
 No striations
- Function
 - Propels substances along internal passageways
 Involuntary control
- Location
 - Mostly walls of hollow organs


Nervous Tissue

Nervous Tissue

Function

- Transmit electrical signals from sensory receptors to effectors
- Location □ Brain, spinal cord, and nerves
- Description
 Main components are brain, spinal cord, and nerves
 - □ Contains two types of cells

 - Neurons excitatory cells
 Supporting cells (neuroglial cells)

Tissue Response to Injury

- Restoration involves
 - □ Inflammation
 - □ Regeneration (repair)
- Inflammation
 - □ Due to something that damages/kills cells or fibers or in some way damage tissue, causing . . .
 - Swelling
 - Warmth
 - Redness
 - Pain
 - □ These common conditions are a result of mast cell activation releases vasodilators such as histamine

Tissue Response to Injury

- Goal:
 - □ Restore normal function to tissue
- Process:
 - □ Fibroblasts activated to produce fibrous tissue
 - □ Usually remodeled over time
- Challenges
 - □ Some tissues are non-vascular and will repair very slowly
 - □ If excitable tissue is replaced by scar tissue function is lost!

The Tissues Throughout Life

- Early on Gastrulation
 The most important time in your life!!
 This is when tissues differentiate mess up here and you don't develop correctly
- At the end of second month of development: Primary tissue types have appeared
 - □ Major organs are in place
- Adulthood
 - □ Only a few tissues regenerate
- Many tissues still retain populations of stem cells With increasing age:

 - Epithelia thin

 - Collagen decreases
 Bones, muscles, and nervous tissue begin to atrophy
 Poor nutrition and poor circulation poor health of tissues
 Increased chance of developing cancer