Biology 160 Human Anatomy and Physiology

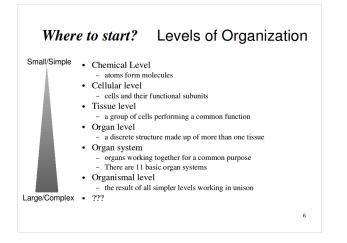
San Diego Mesa College Spring 2010 Tim Plagge - Instructor

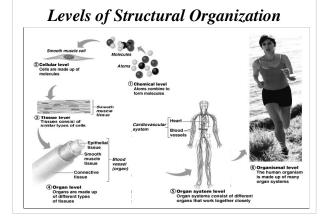
Agenda

- Introductions & Syllabus
- Basics of Anatomy & Physiology
- Hierarchy of Organization
 - Atoms & Molecules
- Homeostasis

Introduction to Anatomy & Physiology

• What is . . .


- Anatomy ?
- Physiology ?
- What are the life processes that are integrated into the study of anatomy & physiology?
 - 3


The studying of A&P

- How does one study this subject?
 - mechanistic vs. teleological approaches
 - tools of the trade
 - from scalpels to computers
- Why study A&P?

Divisions of Anatomy & Physiology

- Gross vs. Microscopic Anatomy
- Anatomy specialties...
 - Surface, regional, systemic, developmental. . .
- Physiology specialties...
 - Cell, special (organ level), systemic, patho, exercise, ...

Basic chemistry for A&P

- What is essential to know?
 - Structure of an atom
 - Types of bonds and how it relates to atomic structure (electron shells)
 - Basic energy reactions
 - Inorganic compoundsOrganic compounds
- Why do we need to know this?
 - It relates to everything that goes on within a cell, both in structure and function!

Atoms

- Atoms are the smallest building blocks of matter
 - Matter is anything that has mass and takes up space
 - Three phases of matter:
 - Solid
 - Liquid
 - Gas
- Size: small!!!!
 - The largest is only .5 nm (.000000005m or $5x10^{10}$ m)

9

Atomic Structure

- Atoms are composed of three main particles (subatomic)
 - Protons (p⁺)
 - Neutrons (n⁰)
 - Electrons (e)
- Location of subatomic particles

 Protons & neutrons are located in the nucleus of the atom

10

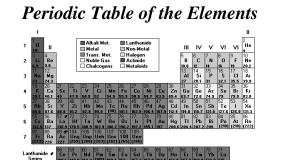
11

12

- Electrons are located in the electron cloud (think of as thick layered shells)

Atomic terms

• Atomic number


Actinide Series

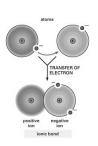
- the number of protons in an atom's nucleus
- Mass number (atomic mass)
 Total number of protons and neutrons in the nucleus

- Different mass numbers indicate different **isotopes**

• What good is the period table of elements?

J Np Pu Am Cm Bk Cf Es Fm Md No L

Electron Shells


- Electrons "orbit" the nucleus of an atom in an electron cloud
 - This cloud is best freeze framed and viewed as electron shells
 - Different shells have different numbers of electrons in them and all shells want to have a stable number of electrons
 - Unstable shells attract or give off electrons to become stable!
 - · This brings us to bonding

Chemical Bonds & Compounds

- Chemical compounds are formed when two or more atoms form a bond
- The shells of atoms that are not stable gain stability by sharing, gaining or losing electrons in chemical reactions
- Molecules vs. compounds
 - Molecules are chemical structures made of more than one atom (of the same variety) bonded together
 - Compounds are made of two or more different atoms that are formed during chemical reactions
 - The compound may have VERY different properties than either atom (ex. H and Cl molecules)

Ionic Bonds

 Ionic bonds are created by an electrical attraction between anions (negatively charged atoms) and cations (positively charged atoms) ex. Na⁺ Cl⁻, formed when electons are gained or lost

15

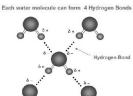
13

Covalent Bonds

- Covalent bonds are created by two atoms sharing electrons to satisfy shell requirements
 - If the atoms share only a single pair of electrons it is a single bond, if two pair a double bond, if 3 pr. – triple

16

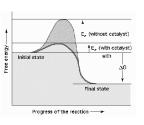
17


18

 The bonds may be non-polar (no charge on the compound) or polar (with a charge – due to unequal sharing of electrons), or amphipathic (with a polar and non polar region)

Hydrogen Bonds

- · Weak forces of attraction between atoms and molecules.
- With hydrogen's slightly positive nature (short an electron), it is attracted
 - to the weakly negative charge of oxygen or nitrogen in a polar covalent bond
- Hydrogen bonding forces are too weak to form new compounds, but can alter shape or create surface tension

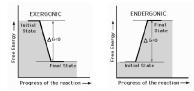


Chemical Reactions & Energy

- Chemical reactions occur as new bonds are formed or broken • from initial compounds (reactants) forming new compounds (products)
- The summation of all chemical reactions in the body is called metabolism and is a summation of:
 - Anabolic (synthesis) reactions building compounds AB A + B
 - Requires energyEx. dehydration synthesis
 - Catabolic (decomposition) reactions splitting compounds Releases energy
 Ex. hydrolysis AB A + B
- Exchange reactions reactant molecules are rearranged AB + CD AC + BD
- A double ended arrow signifies a reversible reaction the direction the reaction proceeds depends on the quantities of reactants and products

Reaction rates & Catalysts

- Reactions require energy to start = activation energy
- Catalysts are compounds that accelerate the reaction but are unchanged by it and can be reused.


19

20

*Biological catalysts are referred to as enzymes

Exergonic vs. Endergonic Rxns

- If a reaction proceeds and releases more energy than is used, it is said to be **exergonic**
- If a reaction proceeds and requires more energy than is released, it is said to be **endergonic**

Inorganic vs. Organic Compounds

- Inorganic
 - Small compounds usually don't contain C or H
 - CO2, O2, H2O, inorganic acids & bases, salts (main inorganic compounds)
- Organic
 - Larger more complex molecules
 may contain hundreds of thousands of atoms
 - Composed mainly of H and C (fats, carbohydrates, lipids, proteins, nucleic acids, nucleotide based energy compounds)

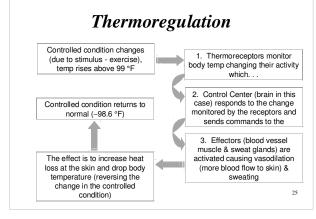
Homeostasis

- What is homeostasis?
 - The operation of an organism within set physiological limits, i.e. creating a stable environment for **all levels** of structure to operate within
- How is homeostasis maintained?
 - Regulation of homeostasis is maintained by feedback systems
 - Positive vs. Negative
 - Feedforward

Homeostasis – requirements...

• Something needed to monitor the required environment

- A receptor (1)

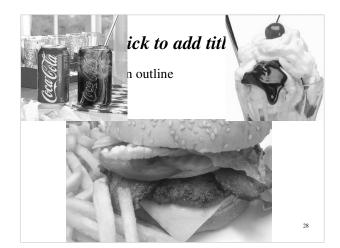

- Something to process the information from the receptor
 - A Control or integration center (2)
- Something to respond to commands from the control/integration center

- An effector (3)

Homeostatic Feedback Loops

- Negative Feedback Loops
 - The change in the controlled (monitored) condition starts a series of events that corrects that change back to normal.
 - This is the most common mechanism to maintain physiological limits (temp, blood gas levels, osmotic balance...)
 - Example: thermogregulation

22



Homeostatic Feedback Loops

- Positive Feedback Loops
 - The change in the controlled condition caused by a stimulus produces a response that reinforces (is positive) the stimulus
 - Common or Rare Loop?
 - Quite rare as it can be extremely hazardous if applied wrong....
 - apply it to thermoregulation and it will kill you
 - apply it to blood clotting and it will save you!
 - Other examples?

Homeostatic Feedback Loops

- Feedforward mechanism
 - Creates a change in the system ahead of the actual event
 - A homoestatic loop involved in preparation
 - ex. cephalic phase of digestion – You see, think, smell food &.....

_			
_			
_			

Failure of Homeostatic Mechanisms

Depending on the level of failed homeostasis
 Creates disease and possibly death without intervention.